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A linear stability analysis is performed for the homogeneous state of a monodisperse
gas-fluidized bed of spherical particles undergoing hydrodynamic interactions and
solid-body collisions at small particle Reynolds number and finite Stokes number.
A prerequisite for the stability analysis is the determination of the particle velocity
variance which controls the particle-phase pressure. In the absence of an imposed
shear, this velocity variance arises solely due to the hydrodynamic interactions among
the particles. Since the uniform state of these suspensions is unstable over a wide range
of values of particle volume fraction φ and Stokes number St, full dynamic simulations
cannot be used in general to characterize the properties of the homogeneous state.
Instead, we use an asymptotic analysis for large Stokes numbers together with
numerical simulations of the hydrodynamic interactions among particles with specified
velocities to determine the hydrodynamic sources and sinks of particle-phase energy.
In this limit, the velocity distribution to leading order is Maxwellian and therefore
standard kinetic theories for granular/hard-sphere molecular systems can be used to
predict the particle-phase pressure and rheology of the bed once the velocity variance
of the particles is determined. The analysis is then extended to moderately large Stokes
numbers for which the anisotropy of the velocity distribution is considerable by using
a kinetic theory which combines the theoretical analysis of Koch (1990) for dilute
suspensions (φ � 1) with numerical simulation results for non-dilute suspensions
at large Stokes numbers. A linear stability analysis of the resulting equations of
motion provides the first a priori predictions of the marginal stability limits for
the homogeneous state of a gas-fluidized bed. Dynamical simulations following the
detailed motions of the particles in small periodic unit cells confirm the theoretical
predictions for the particle velocity variance. Simulations using larger unit cells
exhibit an inhomogeneous structure consistent with the predicted instability of the
homogeneous gas–solid suspension.

1. Introduction
One of the simplest and yet most stringent challenges in the modelling of gas–

particulate flows is to predict the conditions under which a homogeneous fluidized bed
will be unstable to volume fraction variations. Jackson (1963) showed that equations
of motion which include particle-phase inertia and a drag coefficient that is a function
of volume fraction lead to a prediction that the bed will always be unstable. This
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instability arises because the volume-fraction-dependent drag yields a kinematic wave
speed that differs from the mean velocity of the particles. Therefore, volume-fraction
waves propagate relative to a test particle and lead to a time-dependent drag force
acting on the particle. The particle’s inertia causes it to overshoot this forcing and
move toward regions of higher volume fractions. Later studies (Anderson & Jackson
1968) introduced the concept of a particulate-phase pressure that tends to resist
variations in volume fraction and thereby has a stabilizing influence. By a suitable
choice of the particle pressure as a function of solids volume fraction it was possible to
explain the stability of fluidized beds. However, the resulting theory is not predictive
in the absence of a method of calculating the particle pressure from first principles.
Batchelor (1988) suggested that the particle pressure be related to the hydrodynamic
particle self-diffusivity in a low Reynolds number liquid–solid suspension and used
measurements and plausible reasoning concerning this quantity to suggest a model for
the particle pressure. While this suggestion has some physical basis, it ignores inertial
effects and is most applicable to low-to-moderate Reynolds number liquid-fluidized
beds. More recent studies (Didwania & Homsy 1982; Anderson, Sundaresan &
Jackson 1995; Glasser, Kevrekidis & Sundaresan 1997; Goz 1995; Harris & Crighton
1994; Batchelor 1993) have explored the complex dynamics that occur beyond the
onset of the initial instability without seriously re-examining the assumed form of
equations of motion.

Recent progress in the kinetic theory of granular materials and theories and
numerical simulations of gas–solid suspensions raises the prospect that the particle
pressure may be derived from first principles allowing an a priori determination of
the marginal stability limits for a monodisperse fluidized bed. The kinetic theory
of granular materials or dense gases (Lun et al. 1984; Jenkins & Richman 1985)
shows that a particle pressure arises when momentum is transported by the random
translational motion of the particles and when interparticle collisions instantaneously
transport momentum from the centre of one particle to another. A crucial step in
determining the particle pressure is to predict the magnitude of the particle velocity
fluctuations. In the theory of rapid granular flows, the particle temperature (or one-
third the velocity variance) is determined by a balance of the work done to shear the
fluid with the energy dissipated by inelastic interparticle collisions.

Sangani et al. (1996) incorporated the effects of the interstitial gas in a study of rapid
shearing motion of a particulate suspension. Exploiting the large O(2000) ratio of the
particle to gas density, the inertia of the particles was retained while the inertia of the
gas was neglected. The viscous dissipation due to the interstitial flow supplemented
the dissipation due to inelastic collisions lowering the particle temperature relative to
that for particles in vacuum. The rate of dissipation was determined from a simulation
for a suspension of particles with a Maxwellian velocity distribution. A kinetic theory
which incorporated this viscous dissipation rate was able to predict most of the
rheological properties observed in full dynamic simulations of sheared suspensions
with hydrodynamic interactions among the particles.

In a homogeneous fluidized bed, there is no shearing motion to provide the source
in the fluctuation energy budget for the particulate phase. Koch (1990) noted that
an alternative source of energy could arise from the random forces acting on a
particle due to the hydrodynamic disturbances produced by its neighbours as they
settle relative to the gas. Koch determined the magnitude of this source in dilute
suspensions, φ � 1, of very (St � φ−3/2) massive particles for which the mean-
free time between collisions is smaller than the particle viscous relaxation time
m/(6πµa) and moderately (φ−3/2 � St � φ−3/4) massive particles for which the
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viscous relaxation time is shorter than the collision time. Here, φ is the particle
volume fraction, St = mUt/(6πµa

2) is the Stokes number, m and a are the mass
and radius of the particles, Ut = mg/(6πµa) is the terminal velocity of an isolated
particle, g is the acceleration due to gravity, and µ is the gas viscosity. Using this
source to determine the particle temperature and pressure, Koch considered the limits
of stability for a dilute sedimenting gas–solid suspension. A region of stability was
predicted but only for very dilute suspensions φ 6 O(St−2/3).

In this paper, Koch’s (1990) theoretical predictions for the particle pressure and
the marginal stability limits will be extended to higher particle volume fractions.
At high Stokes numbers the source of energy is related to a time integral of the
autocorrelation of the force felt by a test particle. Since the homogeneous fluidized
state is generally unstable, this correlation cannot be determined by straightforward
dynamic simulation of the particles’ motion in a gas. We exploit the fact that in this
limit the velocities of all the particles are nearly equal with the distribution of the
small velocity fluctuation being nearly Maxwellian. The autocorrelation of the force
can therefore be evaluated by computing the force on the particles having the same
speed but moving according to a hard-sphere Maxwellian distribution. In § 2 we use
a method of multipole expansion described in Mo & Sangani (1994) and Sangani &
Mo (1996) for computing the force on the particles given their velocities to determine
the force autocorrelation and hence the source of velocity fluctuations for φ ranging
from 0.03 to about 0.56.

In § 3, we develop a kinetic theory for concentrated suspensions of moderate-
Stokes-number particles whose velocity variance is significantly anisotropic. Koch
(1990) determined the anisotropic source in this regime for dilute suspensions where
the collisional distribution of fluctuation energy into vertical and horizontal velocity
moments is negligible. We modify his analysis to account for the collisional redistribu-
tion of energy and the effect of particle interactions at finite φ on the source of energy.

Knowing the velocity variance, granular flow theory may be used to determine the
particle-phase pressure and rheology. The resulting set of equations for the particle
phase is analysed in § 4 to determine the criterion for the stability of homogeneous
fluidized suspensions to small perturbations. It is found that these suspensions are
unstable over a wide range of values of φ and St. While this is generally well known,
it must be appreciated that the present study is the first one based on equations of
motion in which all the important terms are derived from first principles.

Section 5 presents the results of dynamic simulations following the motion of
individual particles. We first consider relatively dilute suspensions with a small system
size for which we expect the suspension to be stable. The simulations for this case
allow us to validate the theory for velocity variance over a wide range of Stokes
numbers. Next, we consider more concentrated suspensions where the suspension
is expected to be unstable even for small system sizes. Our simulations show clear
evidence for the instabilities arising in these dense suspensions.

2. Particle velocity variance in a homogeneous suspension
We begin our analysis with the derivation of a general expression for the source

of fluctuation energy in a homogeneous suspension. The velocity of a representative
particle α sedimenting through a gas satisfies

m
dvα

dt
= mg+ F α

v + F α
c , (1)
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where m is the mass of the particle, g is the gravitational acceleration, F α
v is the

force resulting from the viscous stresses in the gas around the particle, and F α
c is

the collision force experienced by the particle when it comes in contact with another
particle in the suspension. Note that the buoyancy force is neglected in the above
expression since the density of the gas is typically much smaller than the density of
the particle. The viscous force will in general depend on the velocity and position of
all the particles in the suspension. We shall denote the average over all the particles
in the suspension by an angular bracket. Since the sum of the collisional forces on
the colliding particles vanishes, averaging (1) yields

m
d〈v〉
dt

= mg+ 〈F v〉. (2)

Note that the above applies strictly to homogeneous suspensions for which the spatial
gradients in the average velocity and volume fraction vanish. The spatial derivative
terms to account for slow variations in these quantities will be added to the above
equation later in § 4 where we consider the stability of homogeneous suspensions to
small spatial gradients of particle volume fraction.

An equation for the fluctuation energy in homogeneous suspensions can be obtained
now by multiplying (1) by vα and subtracting from its average an equation obtained
by multiplying (2) by 〈v〉. This yields

3m

2

dT

dt
= 〈vα · (F α

v + F α
c)〉 − 〈v〉 · 〈F v〉, (3)

where T = ( 1
3
)(〈vα2〉−〈v〉2) is the particle-phase temperature. At steady state the terms

on both sides of the above equation must vanish for homogenous suspensions. It is
convenient, to decompose the right-hand side into a number of terms representing
the sources and sinks of fluctuation energy by various mechanisms. For example, in
rapidly sheared gas–solid suspensions examined in Sangani et al. (1996), and in the
rapid granular flow literature (e.g. Lun et al. 1984), the source of energy is expressed
in terms of a product of the particle-phase stress and the strain rate while the sink
is expressed in terms of energy dissipation by viscous forces acting on the particles
and due to inelastic collisions. Expressing the right-hand side of (3) by S − Γ with
Γ representing the sink of energy that occurs in the absence of shearing motion and
relative motion between the phases, we obtain an expression for the source of energy
fluctuations as

S = Γ + 〈vα · (F α
v + F α

c)〉 − 〈v〉 · 〈F v〉. (4)

The dissipation rate is Γ = Γvis + Γinelas with the viscous and inelastic sinks given,
respectively, by (Sangani et al. 1996)

Γvis = 18πµTaRdiss(φ), (5)

Γinelas =
12m

aπ1/2
(1− e)φχT 3/2, (6)

where χ is the value of the radial distribution function at contact. (Note that Γ in the
present paper is equivalent to Γ/n in the notation of Sangani et al. 1996.) The above
two expressions correspond to the energy dissipation per particle in a suspension
with an isotropic Maxwellian velocity distribution with a zero mean velocity and 3T
variance when the Reynolds number based on particle radius a and characteristic
fluctuation velocity T 1/2 is small compared with unity and when e, the coefficient of
restitution for particle collisions, is close to unity (nearly elastic collisions). Rdiss(φ)
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accounts for the particle interactions in Stokes flow. Expressions for this quantity and
χ will be given later in this section.

With Γ specified, one can, in principle, compute S from dynamic simulations of
sedimenting particles by evaluating the right-hand side of (4) using the force and
velocity of each particle computed at every time step in simulations. This procedure is
suitable provided that the suspension remains homogeneous. Since we are primarily
interested in investigating the stability of the homogeneous state itself, this procedure
cannot be adopted. It also does not allow one to develop a simple analytical expression
for the source of energy as a function of Stokes number and other relevant variables.
Therefore, we shall use a perturbation technique to determine S in the limit of
large Stokes number for nearly elastic particles. An approximate theory will then be
developed for the case of moderate Stokes numbers.

2.1. Suspensions of high-Stokes-number, nearly elastic particles

In a high-Stokes-number suspension, the particles respond only weakly to hydrody-
namic velocity disturbances in the gas. Since these hydrodynamic interactions are
the only source of velocity variance in a monodisperse, sedimenting suspension, the
leading-order approximation to the particle velocity is simply a common mean veloc-
ity U = 〈v〉 obtained by solving (2). Koch (1990) showed that the particle velocities
in a high-Stokes-number sedimenting suspension of perfectly elastic particles can be
expanded in inverse powers of St−1/3. Therefore, we expand the velocity of a particle
in a series

vα = U + vαII + vαIII + . . . (7)

where U � vII � vIII . . . , 0 = 〈vII〉 = 〈vIII〉 . . . . It will be shown that, for large St
and e = 1, vII/U and vIII/vII are O(St−1/3). Similarly, we expand the viscous and
collisional forces on particle α in a series

F α
v = F α

v,I + F α
v,II + F α

v,III + . . . . (8)

Here, F α
v,I represents the viscous force on particle α when all the particles are moving

with the velocity U , F α
v,II the force on the particle given the velocity of particle γ

to be vγII , γ = 1, 2, . . . , N, N being the number of particles in the suspension, and so
on. Once again, Fv,II/Fv,I and Fv,III/Fv,II are expected to be of O(St−1/3) for elastic
particles.

The mean velocity is controlled by a balance of the gravitational and drag forces
acting on the particles as well as the particle inertia in cases of unsteady flows. Since
the particles have a common velocity, this leading-order velocity does not contribute
to the collisional force. The mean velocity is obtained from the average momentum
balance for the particles (2).

The characteristic value of the collisional force F α
c,II averaged over a small time

interval is mv2
II/a since the change in momentum upon a collision is O(mvII ) and

the collision frequency is O(vII/a). Thus, the velocity fluctuations vγII induce colli-
sional contributions to the momentum balance that are O(µaUSt1/3) and the leading
approximation to the momentum balance is

m
dvαII
dt

= F α
c,II . (9)

The viscous and gravity forces do not contribute to the above equation of motion
indicating that to leading order the particle fluctuation velocity is similar to that of a
hard-sphere molecular system. Together with the condition 〈vαII〉 = 0, (9) implies that
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the velocity distribution f(vII ) is an isotropic Maxwellian. If we further require that
the variance in vα be the same as the variance in vαII , we have

f(vII ) =
1

(2πT )3/2
exp

(
− v

2
II

2T

)
, (10)

where T is the granular temperature.
Although the leading-order momentum balance (9) establishes that the particle

velocity distribution is nearly Maxwellian, it is not sufficient for determining the
granular temperature T . This is because (9) includes only conservative forces. The
O(µaU) contributions to the momentum balance (1) are

m
dvαIII

dt
= −〈F v,I〉+ F α

v,I + F α
c,III , (11)

where we have used the result −mg = 〈F v,I + F v,II + F v,III + . . .〉 obtained by
applying (2) at steady state. The collisional force F α

c,III = O(µaU), because it

results from O(mvαIII ) = O(mU/St2/3) changes in momentum which occur at an
O(vII/a) = O(USt−1/3/a) rate. The correction vIII to the Maxwellian velocity is driven
by F α

v,I − 〈F v,I〉, which represents the fluctuation in the force driven by the mean
velocity U of the particles. This force fluctuates because of variations in the spatial
configuration of the particles. In a dynamic suspension, F α

v,I − 〈F v,I〉 will vary with
time as a particle translates relative to its neighbours.

To summarize, the particle velocity vα consists to leading-order of a common mean
velocity U , which may be determined by the mean momentum balance for the particle
phase (2). The O(USt−1/3) correction to this velocity has a Maxwellian distribution,
because the leading-order momentum balance (9) for the individual particles is
dominated by elastic interparticle collisions. Finally, an O(USt−2/3) correction is
driven by the fluctuating viscous force associated with the gas flow induced by the
mean motion of the particle assembly motion. This fluctuating force changes with time
as the particles move relative to one another with a motion that can be approximated
using hard-sphere dynamics.

To see how vIII determines the granular temperature of the suspension, we must
examine the energy balance of the particle phase (3). The right-hand side of (3) is
given to leading order by

〈vαII · (F α
v,II + F α

c,II )〉+ 〈vαIII · (F α
v,I − 〈F v,I〉)〉, (12)

where we have used the fact that vαII is uncorrelated with the particles’ spatial
configuration and, hence, with F α

v,I . The first term in the above expression simply
represents the energy dissipation per particle in a suspension with the particle velocities
given by an isotropic Maxwellian, and therefore represents −Γ (cf. (5) and (6)).
Comparing the above with (4), we see that to leading order the source of energy
fluctuation is given by

S = 〈vαIII · F̂ α
v,I〉, (13)

where F̂ α
v,I = F α

v,I − 〈F v,I〉 and vαIII can be obtained by integrating (11) over time.
Denoting the right-hand side of (11) by F α, the above expression for the source can
be expressed as

S = m−1

〈
F̂ α
v,I(t) ·

∫ t

−∞
F̂ α dt

〉
. (14)

Thus, we see that the source is related to the autocorrelation of the force felt by
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a representative particle. We expect the correlation time to be comparable with the
O(a/T 1/2) time over which the spatial configuration of particles changes significantly.
We therefore write the source as the product of the square of the O(6πµaU) force
and the O(a/T 1/2) correlation time scale, i.e.

S =
a(6πµa)2U2

mT 1/2
S∗(φ). (15)

In deriving (15), we have assumed that the average velocity of the gas–solid mixture
is zero. However, this expression may be generalized to non-zero mixture velocities
by replacing U by the relative velocity of the two phases. S ∗ is the non-dimensional
source which will be determined using numerical simulations in § 2.2.

In summary, the average momentum and fluctuation energy equations for a ho-
mogenous fluidized bed in the limit of high Stokes number and nearly elastic particles
are given by

m
dU

dt
= mg− 6πµaRdrag(φ)U , (16)

3m

2

dT

dt
=
a(6πµa)2

mT 1/2
U2S∗(φ)− 18πµaTRdiss(φ)− 12m

aπ1/2
(1− e)φχT 3/2. (17)

The steady-state particle-phase temperature for elastic particles is given by

T

U2
t

=

[
S∗

3StR2
dragRdiss

]2/3

(18)

when e = 1 in agreement with our assumption that T/U2 is small. In writing the
above expression we have made use of the relation

U

Ut

=
1

Rdrag

(19)

obtained from (16) at steady state and mg = 6πµaUt. Substituting this estimate of T
into the expression (final term on the right-hand side of (17)) for the energy dissipated
by inelastic collisions, we find that the particles may be treated as elastic provided
1−e� St−2/3. If the dissipation by inelastic collisions is much larger than the viscous
dissipation, then we obtain

T

U2
t

=
π1/4

St

[
S∗

12(1− e)φχR2
drag

]1/2

(20)

which also vanishes as St → ∞. In this case the expansion in the velocity field
(7) proceeds in inverse powers of St−1/2 but the resulting expression for the source
remains the same. For fixed e we see that the non-dimensional particle temperature
will undergo a transition from a St−2/3 scaling at moderately large St to a St−1 scaling
at very large St.

The drag coefficient Rdrag in (18) is determined to leading order from the average
of Fv,I . Since the average drag on a particle in a suspension where all the particles
are moving with the same velocity U is the same as in the case of a fixed bed with
an average velocity of the fluid −U , we note that Rdrag to leading order is the same
as the drag coefficient Rfb for fixed beds. Thus, for the case of elastic particles,

Rdrag = Rfb + O(St−2/3). (21)
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φ Ns var(FI ) S S/var(FI )

0.35 2 2.3 0.46 0.20
3 11.84 2.16 0.18
4 11.85 2.29 0.19
5 12.56 2.54 0.20

0.45 2 1.14 0.17 0.15
3 22.79 3.68 0.16
4 35.10 5.54 0.16

0.50 2 0.59 0.062 0.10
3 27.10 2.91 0.11
4 48.6 5.44 0.11

Table 1. S∗ and S∗/var(FI ) as functions of φ and Ns for random arrays with N = 16. The variance
is non-dimensionalized by (6πµaU)2. Note that, while both S ∗ and var(FI ) vary significantly with
Ns, their ratio is nearly constant.

The error of O(St−2/3) in the above expression arises from the contribution to the
total drag from vIII .

2.2. Results for energy source S∗ and mean drag Rdrag

We have seen that to leading order the relative velocity vII of the particles is the same
as that of a hard-sphere system. Thus, to determine S∗(φ) we carried out simulations
in which the evolution of particle positions was determined by a molecular dynamics
code. The leading-order viscous force F α

v,I is that associated with the gas motion
produced by the mean velocity U of all the particles. However, this force varies with
time (non-dimensionalized by a/T 1/2) due to the changes in particle configuration
obtained from a hard-sphere dynamics code with a non-dimensional temperature of
unity. At time t = 0, vαIII is taken to be zero for all the particles. At subsequent
times vIII is determined by integrating (9) using Simpson’s rule. At collision both
vαIII and vαII instantaneously change their values according to elastic collision rules.
We found that the straightforward integration of (9) as mentioned above led to large
fluctuations in 〈vIII · F̂ v,I〉. To reduce these statistical fluctuations, a small damping
term −6πµaεRdragv

α
III was therefore added to the right-hand side of (9). The simula-

tions were carried out typically with ε = 0.03. Simulations for different values of ε in
the range 0.01–0.05 were also carried out for selected values of φ, and the variations
in ε were found to have no statistically significant effect on S∗.

The forces on the particles were evaluated using the method described in Mo &
Sangani (1994) in which N particles are placed in a unit cell periodically repeated
in space and the velocity disturbance due to each particle is expressed in terms of
a series of multipoles. Table 1 shows results of simulations for three different values
of volume fraction φ. Ns indicates the largest order of the multipoles retained in
the expansion. The total number of multipoles is then (3N2

s − 1)N. We see that even
though both S∗ and the variance of the viscous force, Fv,I , change considerably with
Ns, the ratio of the two is approximately constant for a given φ. If we interpret S∗
as a product of the force variance and a correlation time, then the results of table
1 suggest that the correlation time is essentially independent of Ns. Calculation of
S ∗ requires averaging over several thousand time steps in order to determine the
correlation time with reasonable accuracy and the simulations with high Ns are, as a
consequence, computationally very intensive. We can, however, take advantage of the
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φ N Ns 〈FI〉 var(FI ) var(FI )/〈FI〉2
0.01 128 1 1.28 0.079 0.048

0.03 128 1 1.50 0.230 0.102

0.05 54 2 1.91 0.285 0.078
32 2 1.88 0.287 0.081

0.07 128 1 2.15 0.455 0.098

0.15 32 2 3.6 1.01 0.078
3 3.84 1.21 0.082
4 3.87 1.25 0.083

0.35 32 3 12.74 12.16 0.075
4 13.60 14.89 0.081
5 13.91 14.57 0.086
6 14.1 17.25 0.086

0.45 32 3 22.86 30.4 0.058
4 25.63 44.8 0.068
5 27.02 52.7 0.072
6 27.51 61.0 0.081

0.50 32 3 31.32 55.63 0.057
4 36.38 89.72 0.068
5 39.45 115.7 0.074
6 41.10 135.7 0.080

Table 2. var(FI )/〈FI〉2 as a function of Ns. The results are obtained by averaging over 30 independent
hard-sphere configurations. Note that the ratio is approximately constant and equal to 0.08 for
φ > 0.15. The average force and variance are non-dimensionalized by, respectively, 6πµaU and
(6πµUa)2.

fact that the correlation time is relatively insensitive to Ns and determine its value
from simulations with lower values of Ns. The force variance must be computed
using higher Ns, but its value can be determined from a relatively small number of
independent hard-sphere configurations.

Table 2 gives results for the force variance as a function of φ and Ns, which were
obtained by averaging over thirty independent hard-sphere configurations. Both the
average drag force 〈Fv,I〉 and the variance are sensitive to the volume fraction but the
ratio of variance to average drag force squared is nearly constant at about 0.085 for
φ greater than about 0.15.

The analysis of Koch (1990) for dilute suspensions gave S∗ = 1/(2π1/2). Therefore
we present the results for S ∗ in figure 1 in terms of Rs defined by

S∗ =
1

2π1/2
RsR

2
drag. (22)

Rs represents the energy source due to a specified mean force acting on the particles
whereas S∗ is the source for a specified mean relative velocity of the particles and gas.
Note that Rs → 1 as φ→ 0. For φ > 0.45 we determined the fixed-bed drag coefficient
Rdrag using N = 16 and Ns = 6 while the correlation time was estimated using Ns = 3
or 4 and N = 64. We found the correlation time at such high volume fractions to be
approximately proportional to the average collision time for the hard-sphere systems.
For example, the ratio of collision times at φ = 0.53 for simulations with N = 16
and N = 64 was 1.28 and the ratio of correlation times for the same values of N was
about 1.25. The spatial configurations of hard-sphere systems change significantly at
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φ

Figure 1. Rs as a function of φ. The circles represent the simulation results and
the line represents (23).

such high volume fractions with N, and this makes it necessary to use larger values
of N at high volume fractions. On the other hand, Koch’s analysis suggests that at
very low volume fractions the correlation time is proportional to the time it takes for
a pair of particles to separate from each other by the Brinkman length of O(a/φ1/2).
This requires that the unit cell be large compared with the Brinkman length, or that
N be large enough. The results for φ = 0.03 and 0.05 were therefore obtained with,
respectively, N = 256 and N = 128. The number of multipoles ((3N2

s − 1)N) required
in determining the forces on the particles is large for these situations, and we used
the O(N) algorithm described in Sangani & Mo (1996) to enhance the efficiency of
the computations for φ 6 0.05 and φ > 0.45.

As shown in figure 1 the numerical results for Rs can be represented well by the
expression

Rs =
1

χ(1 + 3.5φ1/2 + 5.9φ)
, (23)

where χ is the value at contact, r = 2a, of the radial distribution function for a
hard-sphere system which is given by Ma & Ahmadi (1988) as

χ =
1 + 2.5φ+ 4.5094φ2 + 4.515439φ3

[1− (φ/0.64356)3]0.678021
. (24)

The rationale for fitting the numerical results according to (23) is as follows. At
high volume fraction, the correlation time appears to be proportional to the average
collision time, which, in turn, is expected to be inversely proportional to χ. The above
expression for χ by Ma & Ahmadi suggests that this correlation time will vanish at
φ = 0.64356 which is the maximum packing density for spheres in a random array.
The first variation of Rs from 1 at low volume fractions is expected to be O(φ1/2)
because of the dependence of the correlation time on Brinkman screening length.

Results for the fixed-bed drag coefficient Rdrag were obtained previously using a
multipole method by Ladd (1990) for φ 6 0.45. Our results are in very good agreement
with his as shown in table 3. For higher volume fractions, the empirical correlation
by Carman (1937)

Rc =
10φ

(1− φ)3
(25)



Stability of a homogeneous gas-fluidized bed 239

φ Ns Rdrag Ladd Eq. (26) Carman

0.05 2 1.90 1.89 1.99 —
0.15 4 3.88 3.85 4.04 —
0.25 5 7.3 7.3 7.3 —
0.35 5 14.1 14.1 13.6 —
0.45 5 28 28.2 28.2 27.75
0.50 7 41 — — 40.7
0.53 6 52 — — 51.8
0.56 6 64 — — 66.4
0.61 9 105 — — 103.5

Table 3. Rdrag as a function of φ. The result for φ = 0.61 is taken from Mo & Sangani (1994).
Shown also are the corresponding results obtained by Ladd (1990), equation (26), and the Carman
correlation, (23).
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Figure 2. Rfb as a function of φ. The circles are our simulation results, the triangles are the
simulations of Ladd (1990) and the line represents the expressions (26) for φ < 0.4 and (25) (with
0.7 added to its right-hand side) for φ > 0.4.

is known to provide reasonably accurate estimates. Our results for φ > 0.4 are indeed
in good agreement with Carman’s expression.

For the stability analysis it will be necessary to have an analytical fit for the
numerical results for Rdrag as well. We shall use

Rdrag =
1 + 3(φ/2)1/2 + (135/64)φ lnφ+ 17.14φ

1 + 0.681φ− 8.48φ2 + 8.16φ3
(φ < 0.4). (26)

The above expression agrees to O(φ) with the theoretical expression for the drag
in dilute fixed beds (Howells 1974; Hinch 1977; Kim & Russel 1985) and with the
results of numerical simulations as can be seen from figure 2. For φ > 0.4 we shall
use the much simpler expression given by Carman (25) with a small addition of 0.7
to its right-hand side which renders the values of Rdrag given by the two expressions
equal at φ = 0.4. Figure 2 shows a comparison between the numerical results and the
above expressions for Rdrag.

Finally, we shall also need Rdiss(φ) to compute the particle velocity variance.
The viscous energy dissipation in a suspension with a Maxwellian particle velocity
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distribution was evaluated by Sangani et al. (1996) who obtained

Rdiss = 1 + 3(φ/2)1/2 + (135/64)φ lnφ+ 11.26φ

× (1− 5.1φ,+16.57φ2 − 21.77φ3)− φχ ln εm. (27)

The above expression agrees that for Rdrag up to terms of O(φ ln φ). At O(φ) the two
expressions differ since the O(φ) coefficient depends on the details of pair interactions
and the velocities of the particles are different in the two problems. Rdiss is determined
for Maxwell-distributed particle velocities with zero mean and Rdrag for particles with
a common velocity relative to the gas. The energy dissipated in the gap between
two particles having a non-zero relative velocity and separated by a gap width
of ε increases as 1/ε as ε → 0 if one assumes that the standard incompressible,
continuum lubrication flow between smooth, rigid, spherical particles is applicable
at all particle separations. The resulting Rdiss would be infinite. Sangani et al. (1996)
allowed for the breakdown of the usual lubrication analysis for the particles with the
gap width less than 2εma. The resulting Rdiss therefore diverges logarithmically with
εm. For gas–solid suspensions the most likely cause of the lubrication breakdown is
non-continuum effects in the gas since the mean free path λ of the gas molecules is
typically about 1000 Å. Sundararajakumar & Koch (1996) have determined the energy
dissipation in the gap between colliding particles accounting for the finite mean free
path of the molecules and their analysis indicates that using

εm = 4.88(λ/a) (28)

in expression (27) for Rdiss will yield the correct rate of dissipation. Gopinath, Chen
& Koch (1997) have shown that εm may also depend on the compressibility of the gas
for larger particles and larger velocity differences between the particles. However, the
qualitative behaviour of the suspension will not be very sensitive to the exact nature
of lubrication breakdown since it only contributes a weak logarithmic factor.

3. Moderate-Stokes-number suspensions of slightly inelastic particles
In the preceding development, we have assumed that the velocity distribution

function is controlled by the elastic collisions among the particles and is therefore
an isotropic Maxwellian. This requires that the mean-free time between collisions be
much smaller than the viscous relaxation time. In a dilute suspension, this occurs
for very massive particles with St � φ−3/2. In the regime φ−3/4 � St � φ−3/2,
corresponding to moderately massive particles, the particle velocities do not relax
to the local fluid velocity but the velocity distribution function is controlled by
hydrodynamic interactions rather than collisions. Hydrodynamic interactions feed
more energy into the vertical particle velocity fluctuations than the horizontal. As a
consequence, the anisotropy in velocity fluctuations is quite significant in moderate-
to-low-Stokes-number suspensions. As in the case of Sangani et al. (1996) and Kang
et al. (1997) we shall develop an approximate kinetic theory for the moderate-
Stokes-number case using a Grad approximation for evaluating the collisional terms
in the balance equation. The hydrodynamic source of particle fluctuating energy
will be approximated as the anisotropic tensor derived by Koch (1990) modulated
by a function of particle volume fraction computed from the high-Stokes-number
simulations presented in the previous section.

To determine the anisotropy in the velocity variance we need balance equations for
the second moments of the fluctuating velocity Cα

i = vαi − 〈vi〉. An equation for the
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second moment Tij ≡ 〈Cα
i C

α
j 〉 can be readily obtained from (1) and (2) and is given

by

m
dTij
dt

= 〈Cα
i (Fαj,v − 〈Fj,v〉)〉+ 〈Cα

j (Fαi,v − 〈Fi,v〉)〉+ 〈Cα
i F

α
j,c + Cα

j F
α
i,c〉. (29)

Now we decompose the right-hand side into the source and sink tensors resulting from
various mechanisms. For example, the sink due to viscous dissipation is expressed as

Γij,v = −6πµaRdiss(φ)Tij . (30)

Sangani et al. (1996) used the above sink term in their kinetic theory for sheared gas–
solid suspensions and found that the even though Rdiss was determined for high-Stokes-
number suspensions with isotropic Maxwellian distributions, the resulting theory
predicted the velocity moments reasonably accurately even when Stokes number was
not large. The source due to hydrodynamic interactions will be expressed as

Sij,h =
a(6πµa)2

mT 1/2
[(S∗‖ − S∗⊥)UiUj + S∗⊥U

2δij]. (31)

Koch (1990) derived the vertical (S∗‖ ) and horizontal (S∗⊥) components of the source

tensor in the above expression for dilute sedimenting suspensions. We shall assume
that the same expressions hold for non-dilute suspensions when his expressions
are multiplied by the factor Rs(φ)R2

drag(φ) that accounts for higher-order particle
interactions in high-Stokes-number suspensions, i.e. we assume

S∗‖ =
3

16π1/2

(
T

T‖

)1/2

RsR
2
drag

[
(β5 + β) ln

(
β + 1

β − 1

)
− 2

3
β2 − 2β4

]
, (32)

S ∗⊥ =
3

16π1/2

(
T

T‖

)1/2

RsR
2
drag

[
1
2
(β3 − β5) ln

(
β + 1

β − 1

)
− 2

3
β2 + β4

]
, (33)

where β2 = T‖/(T‖ −T⊥) and T‖ and T⊥ are, respectively, the variance in the velocity
components parallel and perpendicular to U .

The collisional change of the second moment of velocity in (29) can be evaluated
using a Grad approximation as was done by Jenkins & Richman (1985) and Sangani
et al. (1996). Setting the velocity gradient terms in (4.21) of Sangani et al. (1996) to
zero we obtain

Sij,c − Γij,c =
24m

5aπ1/2
φχ(1 + e)T 1/2

[
1
3
(2 + e)Tδij − ( 3

2
− 1

2
e
)
Tij
]
. (34)

The trace of the above expression for nearly elastic particles (0 < 1 − e � 1) is
the same as the expression (6) for −Γinelas given earlier. The terms inside the square
brackets in (34) reduce to Tδij − Tij when the coefficient of restitution is unity
indicating the tendency of the collisions to drive the velocity distribution towards an
isotropic Maxwellian.

Collecting all the terms, the balance equation for the second moments becomes

a

Ut

dTij
dt

= −Rdiss

St
Tij +

Ut

T 1/2

1

St2
{S∗⊥U2δij + (S∗‖ − S∗⊥)UiUj}

+
24

5π1/2
φχ(1 + e)

T 1/2

Ut

[
1
3
(2 + e)Tδij − ( 3

2
− 1

2
e
)
Tij
]
. (35)

In the limit of large St and small 1−e the collision term forces the velocity distribution
to become isotropic (β → ∞), and the trace of the above equation reduces to (17)
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Figure 3. The velocity variance as a function of Stokes number for a suspension of perfectly elastic
particles with φ = 0.02 and N = 16. The circles are the results of dynamic simulations and the line
is the theoretical result given by (18).
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Figure 4. The scaled vertical and horizontal components of the second moment of the particle
velocity are plotted as a function of Stokes number for perfectly elastic particles. The circles
and upper curve represent the dynamic simulations and the theoretical result obtained from (35),
respectively, for T‖St2/3. The squares and lower curve are the dynamic simulation and theoretical

results for T⊥St2/3.

derived in the previous section. For dilute suspensions with e = 1 and φ−3/4 � St�
φ−3/2 the collision term in the above equation is negligible as shown by Koch (1990).
His analysis gave

T‖
U2
t

= 0.802St−2/3,
T⊥
U2
t

= 0.034St−2/3. (36)

Note that the anisotropy of the variance is very large in this limit. The variance can
be estimated for arbitrary φ and St by keeping all the terms in (35) and solving the
resulting equations numerically.

The theoretical results for φ = 0.02 and e = 1 are shown in figures 3 and 4 where
they are compared with the results obtained by the direct numerical simulations to
be described in § 5. At low Stokes number, the simulated velocity variance reaches a
constant value characteristic of an inertialess suspension, cf. figure 3. As the Stokes
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Figure 5. The scaled velocity variance T St is plotted as a function of Stokes number for suspensions
of particles with coefficients of restitution e = 1, 0.9, and 0.8 and φ = 0.05. The solid curves are the
theoretical results. The dashed lines correspond to the large-Stokes-number asymptotes (18) and
(20). The circle is the result of dynamic simulations for e = 1, N = 16, and St = 50.

number is increased the Brinkman screening of the hydrodynamic interactions among
the particles leads to a velocity variance that decreases in proportion to St−2/3. In view
of this high-Stokes-number scaling, we plot the products T‖St2/3 and T⊥St2/3 as a
function of the Stokes number in figure 4. At low Stokes numbers, the collisions have
relatively little effect on the velocity variance and the anisotropy of the hydrodynamic-
interaction source leads to a large ratio of T‖/T⊥. As St increases, collisions become
increasingly rapid compared with viscous relaxation and the velocity distribution
becomes increasingly isotropic. Figure 5 illustrates the effects of inelastic interparticle
collisions on the velocity variance. Results are presented for φ = 0.05 with coefficients
of restitution e = 0.8, 0.9 and 1. The dashed lines indicate the high-Stokes-number
asymptotes (18) and (20). It can be seen that the variance for perfectly elastic particles
scales like St−2/3 over the full range of Stokes numbers, St > 10 shown. On the other
hand, the inelastic particles exhibit a transition from a St−2/3 scaling at moderate St to
a St−1 scaling at very high Stokes numbers. The circle indicates the velocity variance
obtained in a dynamic simulation with 16 particles in a unit cell. The variance is
approximately 40% higher than the theory. The additional variance observed in the
dynamic simulation can be attributed to the inhomogeneous structure that develops
in this unstable suspension. This will be discussed further in the forthcoming sections.

4. Stability analysis
In this section, we will introduce equations of motion applicable to an inhomoge-

neous fluidized bed and perform a linear stability analysis to determine the conditions
under which a homogeneous bed is unstable to waves of particle concentration. Pre-
vious studies (Didwania & Homsy 1982; Anderson et al. 1995; Glasser et al. 1997;
Goz 1995; Harris & Crighton 1994; Batchelor 1988, 1993) of fluidized bed stability
have indicated that waves with the wave vector parallel to gravity (vertical waves)
have the largest growth rate. Thus, the initial instability involves vertical waves, al-
though horizontal structure may set in subsequently. We will restrict ourselves to
determining the form of the initial instability and will therefore consider only vertical
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waves in which the average particle velocity 〈U〉 = e3U is in the vertical direction
and the dependent variables U, φ, T , and T‖ are functions of the vertical coordinate
z = e3 · x and time t only. The average mixture velocity 〈u〉 will be taken to be zero.

The traditional particle-phase equations of motion for fluidized beds have included
mass and momentum conservation equations. The momentum conservation equation
included a particle pressure which was assumed to be a function of the volume
fraction only. In our treatment based on the kinetic theory of granular materials, one
finds that the particle pressure is related to a particle-phase temperature as well as the
volume fraction. Thus, we require additional conservation equations for the kinetic
energy associated with the particle velocity fluctuations. We found in § 3 that the
anisotropy of the velocity variance is often quite significant and so we will consider
separate conservation equations for the vertical velocity variance T‖ and the overall
variance 3T = T‖ + 2T⊥.

Non-dimensionalizing U and T 1/2 by the terminal velocity Ut, z with the particle
radius a, and t by a/Ut, the equations of mass and momentum conservation reduce
to

∂φ

∂t
+

∂

∂z
(φU) = 0, (37)

φ

[
∂U

∂t
+U

∂U

∂z

]
=
φ

St
− φRdrag

St
U − ∂Pm

∂z
+

∂

∂z

[
µc
∂U

∂z

]
. (38)

The above equations are the same as those given in our treatment of a sheared
gas–solid suspension (cf. (4.13)–(4.16) and (4.22) from Sangani et al. 1996) except that
the momentum equation contains a body force, φ/St, due to gravity. In (38)

Pm = (φ+ 8B/5)T‖ + (12/5)BT , (39)

µc =
48

5π1/2
BT 1/2, (40)

B = φ2χη, η = (1 + e)/2. (41)

The left-hand side of (38) contains the particle-phase inertia terms. The second term
on the right-hand side is the mean drag per unit volume exerted by the gas on the
particles; this force is a function of volume fraction owing to the hydrodynamic
interactions among the particles and the dependence of Rdrag on φ plays a crucial
role in the instability. The third term is the divergence of a stress Pm given by (39).
This stress contains terms proportional to the particle velocity variances T and T‖.
These variances are different from those obtained for a homogeneous suspension in
the previous section and contain contributions proportional to ∂U/∂z (see (42) and
(43) below). Thus, the third term on the right-hand size of (38) includes both pressure
gradient and viscous stress terms. The fourth term on the right-hand side of (38) is
an additional viscous stress contribution due to the collisional stress.

The solution of (39) and (35) for the vertical particle pressure in a homogeneous
fluidized bed indicates that Pm scales like St−2/3 in the limit of large Stokes number.
The pressure is non-dimensionalized with ρpU

2
t where ρp is the mass density of

a particle. Since Ut is proportional to a2 and St ∼ a3, the dimensional pressure is
predicted to be proportional to the particle radius squared. This scaling of the particle
pressure with particle radius (at a constant ratio of the superficial to the minimum
fluidization velocity) has been observed in experimental studies by Cody et al. (1996)
in non-bubbling gas fluidized beds. On the other hand, Campbell & Wang (1991)
showed that the particle pressure in a bubbling gas-fluidized bed was well correlated
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Figure 6. The scaled vertical particle pressure PmSt
2/3 is plotted as a function of the volume

fraction for a suspension of perfectly elastic particles with St = 10, 100, 1000, and ∞.

with the bubble-diameter suggesting that the pressure is produced primarily by the
bubble-induced flow in this inhomogeneous situation.

Figure 6 illustrates the variation of PmSt
2/3 with volume fraction for St = 10,

100, 1000, and ∞. In the dilute limit, the source and dissipation of energy approach
constant values. Thus, the granular temperature is finite as φ → 0 and the pressure
is proportional to φ. As the particle concentration increases, two competing factors
influence the particle pressure. For a given particle temperature, the particles in a
dense bed undergo more frequent collisions. However, the source of energy decreases
and the viscous dissipation of energy increases with increasing volume fraction. The
net result is that the particle pressure passes through a maximum at φ ≈ 0.5 and then
diminishes as one approaches the close-packed limit. Zenit, Hunt & Brennen (1997)
have observed a similar qualitative variation of the particle pressure with volume
fraction in liquid-fluidized beds at large Stokes and Reynolds numbers. However,
the absolute magnitude of the particle pressure was considerably larger than that
predicted here for a homogeneous, low-Reynolds-number, gas-fluidized bed. The scaled
vertical pressure PmSt

2/3 is high at moderate Stokes numbers owing to the anisotropy
of the source of particle fluctuation energy and eventually reaches a finite high-Stokes-
number asymptote corresponding to a state where interparticle collisions efficiently
exchange energy between the vertical and horizontal particle motions.

Figure 7 illustrates the effects of inelastic interparticle collisions on the granular
pressure. The vertical pressure Pm is plotted as a function of particle volume fraction
for St = 100 and three coefficients of restitution e = 0.8, 0.9, and 1. The inelastic
collisions lead to a modest decrease in the granular pressure that is most significant
at intermediate volume fractions.

In the dilute limit, particle collisions are infrequent compared with interparticle
hydrodynamic interactions (which occur at interparticle separations comparable with
the Brinkman screening length), so the dissipation due to inelastic collisions is unim-
portant. At high volume fractions, the granular temperature becomes quite small.
Since the viscous dissipation is proportional to T while the loss due to inelastic
collision scales like T 3/2, the small granular temperature makes viscous dissipation
more important than the energy lost due to solid-body collisions.

Equations for the second moments of the velocity distribution in an inhomogeneous
suspension can be obtained using (4.8), (4.10), (4.21), and (4.22) of Sangani et al.
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Figure 7. The vertical particle pressure is plotted as a function of particle volume fraction
for St = 100 and three values of the coefficient of restitution e = 1, 0.9, and 0.8.

(1996). Thus, the conservation equations for the vertical velocity variance T‖ and the
overall variance 3T are

1

2
φ

[
∂T‖
∂t

+U
∂T‖
∂z

]
=

1

3

∂

∂z

(
κ
∂T‖
∂z

)
− Pm ∂U

∂z
+ µc

(
∂U

∂z

)2

+ S‖ − Γ‖, (42)

3

2
φ

[
∂T

∂t
+U

∂T

∂z

]
=

∂

∂z

(
κ
∂T

∂z

)
− PT ∂U

∂z
+ µc

(
∂U

∂z

)2

+ S − Γ . (43)

Sangani et al. only presented results for a spatially homogeneous suspension. When
we generalize their equation (4.20) to inhomogeneous time-dependent suspensions, we
encounter terms involving third moments 〈C3

3 〉 and 〈C3C
2〉 associated with the fluxes

of vertical and overall temperatures. To obtain closed equations of motion, we have
assumed that the fluxes of vertical and total energy can be written as −( 1

3
)κ(∂T‖/∂z)

and −κ(∂T/∂z), where

κ =
8

π1/2
φ2χT

1/2

‖

(
1 +

25π

512φ2χ2

)
(44)

is the thermal conductivity for an isotropic gas with temperature T‖. We use the
vertical temperature in (44) since we are interested in the vertical flux of energy.

The left-hand sides of (42) and (43) represent the convection of vertical and
overall fluctuation energy, respectively. The first terms on the right-hand sides are the
divergences of the thermal fluxes. The second and third terms are the work done by
the stress, i.e. pressure work and viscous dissipation, where

PT = 4BT (3η − 2). (45)

The last two terms on the right-hand sides of (42) and (43) are the sources and
dissipations of vertical and overall energy:

S‖ − Γ‖ =
S∗‖U

2φ

St2T 1/2
− φRdissT‖

St
− 24

5π1/2
BT 1/2

[
(2− η)T‖ − 1

3
(1 + 2η)T

]
, (46)

S − Γ =
S∗U2φ

St2T 1/2
− 3φRdissT

St
− 24

π1/2
(1− η)BT 3/2, (47)

with S ∗ = S∗‖ + 2S∗⊥.
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Figure 8. The growth rate of vertical volume fraction waves is plotted as a function of
the wavenumber for φ = 0.5, e = 1, and St = 4, 5, 6, 8, 10, and 12.

The effect of hydrodynamic interaction forces was purely dissipative in Sangani
et al.’s analysis of sheared gas–solid suspensions in the absence of gravity and it
led to the second terms on the right-hand sides of (46) and (47). However, the
fluctuating force associated with the gas-velocity disturbance induced by the particles’
gravitational settling creates sources of energy represented by the first term. The third
term on the right-hand side of (47) is the dissipation of total energy due to inelastic
collisions, whereas the corresponding term in (46) involves a collisional exchange of
energy between vertical and horizontal fluctuations as well as an inelastic dissipation.

In the absence of spatial and temporal gradients of average properties, the equations
of motion have a unique solution for velocity, temperature and T‖/T given by (18),
(19), and the implicit result obtained by setting the right-hand side of (35) to zero.
To assess the stability of the homogeneous state, we substitute a solution of the form

Ψ = Ψ0 + εΨ̂ exp (ikz + σt) (48)

into the equations of motion (37), (38), (42), and (43). Here, Ψ represents the
dependent variables φ, U, T , and T‖, σ is the growth rate, k is the wavenumber, Ψ0

is the base state, and ε is the amplitude of the perturbation. Linearizing the resulting
equations for ε � 1, we can solve for the relative amplitudes U/φ, T/φ, and T‖/φ
and obtain a fourth-order polynomial dispersion equation for the growth rate σ(k).
This dispersion equation is rather long and will not be presented here. We find that
three of the solutions for σ remain negative for all values of k. The fourth root, which
controls the stability starts from the origin, i.e. σ = 0 at k = 0.

The real part of this root is plotted as a function of k for perfectly elastic particles
with a volume fraction of 0.5 and several values of the Stokes number in figure 8.
Below a critical Stokes number of Stc = 4.36, the growth rate is always negative
indicating that perturbations of all wavelengths decay and the suspension is stable.
At higher St, the growth rate first increases taking on positive values, then passes
through a maximum, and eventually becomes negative. At the larger wavenumbers, the
perturbations are damped primarily by the particle-phase viscosity and conductivity.
Thus, above the critical Stokes number Stc, an unbounded suspension is unstable
and the instability involves perturbations with wavenumbers between 0 and some
maximum unstable wavenumber km.

At small volume fractions a slightly different behaviour is observed as illustrated
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Figure 9. The growth rate of vertical volume fraction waves is plotted as a function of
the wavenumber for φ = 0.02, e = 1, and St = 15, 17, 20, and 22.

in figure 9 for perfectly elastic particles with a volume fraction of 0.02. In this case,
the growth rate is negative for all wavenumbers for St < 16. For a small range of
intermediate Stokes numbers 17 < St < 21.2, the growth rate starts from zero at
k = 0, becomes negative, passes through a minimum, becomes positive and finally
passes through a maximum and becomes negative again. At St > 21.2, the behaviour
of σ(k) is similar to that observed above the critical Stokes number in the dense
suspension φ = 0.5 discussed above.

A simple criterion for the marginal stability of an unbounded suspension can be
obtained by considering the small-wavenumber behaviour of σ(k). Near k = 0, the
growth rate can be expanded in a Taylor series of the form:

σ = ikσ1 + k2σ2 + O(k3), (49)

where σ1 and σ2 are purely real. The first term ikσ1 represents a propagation of the
wave with wave speed σ1 and the stability of the suspension in the long-wavelength
limit is determined by the sign of σ2. A positive value of σ2 provides a sufficient
but not a necessary condition for instability of the unbounded suspension. For dense
suspensions, the Stokes number at which σ2 becomes positive corresponds exactly
to the marginal stability limit. In dilute suspensions, there is a narrow range of
Stokes numbers for which σ2 < 0 but the growth rate becomes positive at higher
wavenumbers. Nonetheless, we will adopt the condition σ2 = 0 as an approximate
criterion for the marginal stability of the homogeneous suspension. In the case
φ = 0.02, this leads to an estimate Stc = 21.2 whereas the actual critical Stokes
number is between 16 and 17.

Thus, the critical Stokes number will be estimated by substituting (49) into the
full dispersion relation and setting terms of O(k) and O(k2) to zero. This procedure
indicates that the thermal convection and conduction terms have no effect on σ1 and
σ2 and the energy equations reduce to the simple algebraic equations:

S‖ = Γ‖, S = Γ . (50)

In other words, the time for thermal convection or conduction over large wavelengths
is sufficiently long that a local balance of sources and sinks of energy controls
the particle-phase temperatures. The linearized momentum and mass conservation
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equations take the form

αφ̂+ ikφ0Û = 0, (51)[
αφ0 + µck

2 + ik

(
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)
φ

+
φ0Rdrag

St

]
Û +

[
ik

(
∂Pm

∂φ

)
U

+
R′dragφ0

StRdrag

]
φ̂ = 0, (52)

where α = σ + ikU0 and the partial derivatives of pressure in (52) can be evaluated
using(

∂Pm

∂φ

)
U

=
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, (54)

and the partial derivatives of T = T (φ,U) and T‖ = T‖(φ,U) can be evaluated using
the algebraic energy balances (50). The dispersion relationship takes the form
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U

= 0. (55)

Substituting (49) into (55), we obtain a kinematic wave speed:

−σ1 = U0 − R′dragφ0

R2
drag

(56)

and the growth rate for large wavelengths:
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)
φ

]
. (57)

To confirm that this local energy balance formulation captured the correct long-wave-
length behaviour, we performed a small-k asymptotic analysis on the dispersion
equation resulting from the full problem and obtained the same results for σ1 and σ2.

Since all suspensions with σ2 > 0 are unstable and most cases with σ2 < 0 are
stable at all wavenumbers, (57) provides a condition that can be used to estimate
the critical Stokes number above which the suspension is unstable. The first term on
the right-hand side of (57) results from the particle inertia and the dependence of
the drag on volume fraction. This is the same destabilizing term found in previous
stability analyses (Jackson 1963). The second term indicates that the increase of
pressure with increasing volume fraction tends to stabilize the suspension by driving
a flow from dense regions to dilute regions of the bed. This is similar to the stabilizing
mechanism identified previously (Anderson & Jackson 1968). In previous analyses,
the pressure was considered to be a function of the volume fraction alone and no
energy balance was considered. In our analysis, the partial derivative of pressure with
respect to volume fraction involves both a direct dependence and a contribution from
the change in the particle temperature as determined by the local energy balance. An
additional destabilizing term results from the dependence of the pressure on velocity.
An increase in the mean velocity of the particles increases the source of energy due
to hydrodynamic interactions and thereby increases the particle temperature and
pressure. This tends to drive particles from dilute regions with fast moving particles
into dense regions with slow moving particles. This effect is not incorporated in
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Figure 10. The leading real contribution to the growth rate in the limit of small wavenumber, σ2,
plotted as a function of the particle volume fraction is indicated by the solid curve. The dashed,
dash-dot and dash-dot-dot curves indicate the first, second and third contributions defined in (57).
The Stokes number is 50 and the coefficient of restitution is 1.

previous studies which assumed no dependence of the particle pressure on relative
velocity.

The contributions of these three terms to σ2 are illustrated in figure 10 for perfectly
elastic particles with St = 50 and a range of volume fractions. The destabilizing term
resulting from the dependence of Rdrag on volume fraction (term 1, dashed line) is
zero at φ = 0, grows rapidly with φ, passes through a maximum at φ = .046, and
decreases at higher volume fractions.

The destabilizing term due to the dependence of particle pressure on U (term 3,
dash-dot-dot line) shows a similar behaviour but with a smaller amplitude. Thus,
the traditional destabilizing term is still the most significant one. The resistance of
the suspension to compression, i.e. −∂Pm/∂φ (term 2, dash-dot line) is negative and
provides a small window of stability at low volume fractions φ < 0.0125. However, this
stabilizing effect is diminished at higher volume fractions. In fact, −∂Pm/∂φ actually
becomes positive for φ > 0.575. As illustrated previously in figures 6 and 7, the
particle pressure decreases with increasing φ in very dense beds. This occurs because
the increased viscous dissipation and decreased source of fluctuation energy lead to a
diminution of the particle temperature as one approaches the close-packed limit. The
destabilizing effect of this negative compressibility leads to a 6.5-fold increase in σ2

between φ = 0.575 and 0.64 (see insert of figure 10).
The critical Stokes number above which the homogeneous unbounded suspension

is unstable is plotted as a function of volume fraction for several values of the
coefficient of restitution in figure 11. In the dilute limit, the critical Stokes number
is 0.149φ−3/2. However, this dilute asymptote is only quantitatively accurate (relative
errors of less than 5%) for volume fractions less than 0.001. For values of φ greater
than about 0.05, the critical Stokes number for an unbounded suspension is suffi-
ciently small, Stc < 5, that the high-Stokes-number theory is not applicable. Thus,
except in the dilute limit, an unbounded, high-Stokes-number suspension undergoing
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Figure 11. The approximation to the critical Stokes number obtained by setting σ2 equal to zero is
plotted as a function of the volume fraction for e = 1 (solid line), 0.9, and 0.8 (dashed lines).

hydrodynamic interactions and short-duration solid-body collisions is unstable. This
observation is consistent with the experimental observation of Tsinotides & Jackson
(1993) that frictional forces are associated with the interval of stable fluidization in
the gas-fluidized beds examined in their experimental studies.

It is interesting to note that the critical Stokes number for elastic particles passes
through a minimum of 1.41 at φ = 0.237 and a maximum of 4.98 at φ = 0.479 before
diminishing once again. Over a small range of volume fractions, 0.518 < φ < 0.52,
the theory predicts an unstable suspension at low Stokes numbers followed by a
narrow window of stability and an unstable suspension at high Stokes numbers.
Above φ = 0.52, the suspension is unstable at all Stokes numbers. However, it
should be noted that the details of the behaviour of Stc(φ) in dense suspensions
may not have physical significance because the high-Stokes-number theory is not
applicable at the low-to-moderate Stokes numbers at which the marginal stability
limit occurs. Therefore, the main conclusion that can be drawn is that high-Stokes-
number suspensions are unstable.

Most analyses of gas-fluidized beds, other gas–solid suspensions, and granular flows
assume that the particle velocity fluctuations are nearly isotropic. In the present theory,
we have adopted separate energy balances for the vertical and horizontal velocity
fluctuations with an energy exchange between these modes resulting from solid-body
collisions. We found that the velocity variance exhibits substantial anisotropy owing
to the larger source of fluctuating energy in the vertical direction, cf. figure 4. It is
interesting then to examine the effect that the anisotropy of the velocity variance has
on the stability predictions by comparing the results for the full analysis with those
for a simplified analysis based on a single overall energy balance. This comparison
is given in figure 12 where the critical Stokes number is plotted as a function of φ.
The theory based on an isotropic velocity variance gives Stc ∼ 0.0788/φ3/2 in the
limit φ → 0 in agreement with the asymptotic analysis of Koch (1990). This dilute
suspension behaviour is similar to that obtained from the full anisotropic variance
calculations but Stc is decreased by a factor of about 2. The anisotropic theory
takes into account the fact that most of the energy is contained in vertical velocity
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Figure 12. The approximate critical Stokes number for perfectly elastic particles obtained from
the full theory (upper solid curve) is compared with that obtained from a model with an isotropic
granular temperature (lower solid curve). The dashed line is the dilute asymptote 0.0788 St/φ3/2 for
an isotropic suspension derived by Koch (1990).

fluctuations and it is these fluctuations that tend to stabilize the suspension to vertical
waves. The critical Stokes number obtained for an isotropic granular temperature
goes to zero at φ = 0.0794, whereas the anisotropic-variance analysis gives a small
but finite Stc in more concentrated suspensions.

When numerical simulations are performed in a unit cell with periodic boundary
conditions, this will restrict the wavelength of the disturbances that can affect the
system. The stability analysis predicts a minimum wavelength (maximum wavenum-
ber) for instability at any St > Stc as illustrated in figures 8 and 9. In practice,
we have found that a periodic unit cell that is large enough to contain enough
particles to approximate a continuum will be large enough to admit unstable modes
except at Stokes numbers that are very close to the critical value. For example, for
φ = 0.02 and St = 22 (close to the critical Stokes number of 16–17), the maxi-
mum unstable wavenumber k = 0.42 corresponds to a cubic unit cell containing 15
particles.

The plots of growth rate as a function of wavenumber in figures 8 and 9 show
that the growth rate passes through a maximum at an intermediate value of the
wavenumber. In figure 13, we present the maximum growth rate σm as a function
of volume fraction for perfectly elastic particles at St = 5, 10, 50, and 100. In very
dilute suspensions, the maximum growth rate is zero and the suspension is stable.
As the volume fraction increases, σm grows, passes through a maximum at φ ≈ 0.1
and decreases again. The maximum growth rate becomes quite small (σm = O(10−3))
for φ ≈ 0.45–0.55. This suggests the possibility that the instability of a fluidized bed
could be missed in numerical integrations of the equations of motion if insufficient
time is allowed for the perturbations to grow. However, it should be noted that the
dimensional growth rate remains sufficiently high that the instability would be readily
observed in experiments. For example, the dimensional growth rate for the most
dangerous mode for 60 µm diameter particles with density of 1 g cm−3 at atmospheric
conditions would always be greater than 1.4 s−1. The dimensional wave speed under
these conditions is about 0.8 cm s−1, so that the disturbance would only propagate
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Figure 13. The maximum growth rate of waves in an unbounded suspension is plotted as a
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Figure 14. The wavelength λ of the fastest growing instability non-dimensionalized by the particle
radius is plotted as a function of volume fraction for St = 100.

about 1 cm while increasing in amplitude by a factor of e. Comparing figures 10
and 13, it may be seen that the qualitative dependence of the maximum growth rate
on volume fraction mirrors the behaviour of the growth rate in the long-wavelength
limit. The wavelength of the fastest growing wave non-dimensionalized by the particle
radius is plotted as a function of φ for St = 100 in figure 14. The wavelength is
very large in dilute suspensions and approaches infinity at the critical volume fraction
for instability. At moderate volume fractions, the wavelength is about 10–15 times
the particle radius. This value is somewhat smaller than the wavelength (about 40a)
of the void fraction waves observed in liquid-fluidized beds by Didwania & Homsy
(1981).

The maximum growth rate increases rapidly with volume fraction for very dense
suspensions, 0.57 < φ < 0.64, cf. figure 13. This sharp increase coincides with the
regime in which the particle pressure decreases with increasing volume fraction so that
the suspension is mechanically unstable even in the absence of a volume-fraction-
dependent mean drag coefficient. It should be noted that the high growth rates
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St Utt/a T‖/U2
t T⊥/U2

t U/Ut Θ‖ Θ⊥ g(2.1a)

0 3000 0.0534 0.0038 0.747 1.00 0.91 2.23
2 4000 0.0517 0.0039 0.748 1.04 1.07 2.12
5 4000 0.0633 0.0035 0.790 1.09 1.06 3.54

20 5000 0.0485 0.0020 0.766 1.05 1.17 3.18
50 10000 0.0313 0.0012 0.729 1.09 0.99 2.39

100 10000 0.0183 0.0010 0.717 1.03 1.14 1.75
200 15000 0.0090 0.0007 0.697 0.97 0.84 1.25
350 15000 0.0051 0.0006 0.692 1.05 0.94 1.33
50 20000 0.0031 0.0005 0.681 0.98 0.88 1.03

750 25000 0.0026 0.0004 0.678 1.05 0.85 1.00

Table 4. Dynamic simulation results for φ = 0.02 with N = 16. t is the time interval
used for computing the average properties.

predicted for φ > 0.57 may not be obtained in practice because of the inapplicability
of the assumed form of the equations of motion at these high concentrations. Dense
suspensions may exhibit a solid-like behaviour when there is insufficient free volume
to allow the particles to translate relative to one another. Deviations of the behaviour
of dynamical simulations of hard spheres from the predictions of the kinetic theory
for dense gases are typically observed for φ > 0.55 (Woodcock 1981).

5. Dynamic simulations
In the previous sections, we presented equations of motion for a gas-fluidized

bed and examined their linear stability. The source of particle fluctuation energy
arising due to the particles’ motion relative to the gas was computed using sim-
ulations of interparticle hydrodynamic interactions that approximated the particle
motions as those in a homogeneous hard-sphere system. In the present section, we
will discuss results of dynamic simulations obtained by solving the full equations
of motion for the particles and the viscous gas. These simulations will be used to
test certain aspects of the theoretical predictions of particle temperature and the
instability of a homogeneous gas-fluidized bed. The simulations for systems with
fewer than N = 64 particles were conducted using the method described in Sangani
& Mo (1994) and Sangani et al. (1996) while those for larger systems were based
on the O(N) algorithm described in Sangani & Mo (1996) with a few modifica-
tions to be specified later in this section. All of the simulations used a lubrication
cut-off of εm = 0.01 to account for the finite mean-free path of the interstitial
gas.

Results for the velocity variance as a function of St in a dilute suspension with
φ = 0.02 and N = 16 were presented earlier in figure 3. A more detailed account
of these simulations is given in table 4. The initial condition for each simulation
was specified as a hard-sphere spatial distribution with each particle’s velocity equal
to the steady-state mean sedimentation velocity. The equations of motion for the
hydrodynamically interacting particles were then solved for several thousand Stokes
settling times a/Ut to reach a statistical steady state. Thereafter, the simulations were
run for the times specified in table 4 and time-average properties of the suspension
were computed.

Two measures of the spatial configuration of the particles were monitored. The
value of the radial distribution function g(r) at r = 2.1a was used to quantify short-
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range clustering tendencies. As noted previously (Ladd 1996; Koch & Shaqfeh 1991),
the probability of close pairs in a dilute sedimenting suspension without particle
inertia is higher than that in a hard-sphere fluid. As the Stokes number is increased
to St = O(10), particle inertia allows particles to come closer to one another and
the tendency for small-scale clustering increases. At higher Stokes numbers, however,
particles have sufficient inertia to bounce off one another and separate after a collision
and g(2.1a) decreases and approaches the hard-sphere value. The small-scale clustering
at moderate St results in an increase in the mean sedimentation velocity because two
spheres in close proximity fall faster than a single sphere. As the Stokes number
is increased further, the mean velocity passes through a maximum and decreases
as a result of the decreased probability of close pairs. The stronger (fixed-bed-like)
hydrodynamic interactions between high-Stokes-number particles also decrease the
mean velocity. For St > 500, the simulated mean velocities are comparable with the
value 0.683Ut obtained for a fixed bed, cf. (19).

The second measure of spatial configurations is the structure factor defined by

S(k) =

〈
1

N

N∑
α=1

N∑
γ=1

exp (2πik · (xα − xγ))
〉
. (58)

This is used to quantify microstructural changes occurring on the lengthscale of the
periodic box used in the simulations. In particular, since the instability is predicted
to occur first for the largest wavelength possible, the structure factors

Θ‖ = S(ez/H), Θ⊥ = [S(ex/H) + S(ey/H)]/2 (59)

corresponding to the smallest vertical and horizontal wavenumbers (largest wave-
lengths) that fit in the box are reported in table 4. For hard-sphere systems with
φ = 0.02 and N = 16 these structure factors are approximately equal to 0.85. We
see that the structure factors for finite-Stokes-number suspensions are comparable in
magnitude: variations seen in table 4 are statistically insignificant. The stability anal-
ysis predicts that the homogeneous suspension is unstable for the cases with St > 17
listed in table 4. However, the box length is smaller than the mean-free path for the
small number of particles (16) used in the simulations and the continuum description
of volume fraction variations is inapplicable. These small boxes provide a means of
approximating the behaviour of a homogeneous suspension and it was shown in
figures 3 and 4 that the velocity variance obtained in the dynamic simulations was in
agreement with the theory.

To find evidence of the inhomogeneity induced by the predicted instability, we
performed a series of simulations (summarized in table 5a) with St = 50, φ = 0.05
and a range of simulation cell sizes N = 16–512. The theory predicts that the
homogeneous suspension is unstable for these conditions. The structure factor for a
homogeneous hard-sphere distribution is about 0.7 and is nearly independent of N.
The structure factors obtained from the dynamic simulations grow with increasing
box size and are consistently higher than those for a hard-sphere distribution. This
is illustrated in figure 15(a) where the vertical and horizontal structure factors are
plotted as circles and squares, respectively, and the structure factor for a hard-sphere
distribution is indicated by the triangles. In the largest unit cells N = 512, the
structure factor is 2–4. The structure factor may be expected to grow with N if the
structure consists of a macroscopic inhomogeneity rather than local particle-scale
clustering. The inhomogeneous structure leads to a spatially varying gravitational
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N tUt/a T‖ T⊥ U/Ut Θ‖ Θ⊥ ΘHS

(a) 16 2500 0.027 0.0018 0.573 1.06 0.80 0.73
32 2500 0.035 0.0022 0.597 1.25 0.92 0.78
64 4300 0.039 0.0035 0.594 1.01 1.04 0.66

128 3900 0.045 0.0051 0.611 1.38 1.19 0.76
256 3300 0.074 0.007 0.636 1.57 1.83 0.59
512 520 0.084 0.008 0.659 2.13 3.50 0.69

(b) 9 600 6.9× 10−4 2.5× 10−4 0.083 0.44 0.22 0.10
16 400 1.3× 10−3 3.0× 10−4 0.089 0.36 0.19 0.08
32 800 1.6× 10−3 3.6× 10−4 0.086 0.88 0.23 0.08
64 900 1.5× 10−3 6.5× 10−4 0.083 0.51 0.19 0.07

1024 350 2.6× 10−3 9.3× 10−4 0.095 1.29 0.38 0.09

Table 5. Dynamic simulation results for (a) St = 50 and φ = 0.05 and (b) St = 100 and φ = 0.35 as
a function of N. ΘHS is the structure factor for the hard-sphere systems. Note that the simulation
for N = 512 in (a) was carried out for a relatively short period and therefore the results for that
case may not represent steady-state values.
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Figure 15. The box-length structure factors Θ‖ (circles) and Θ⊥ (squares) for gas–solid suspensions
with (a) φ = 0.05 and St = 50 and (b) φ = 0.35 and St = 100. The triangles correspond to Θ‖ for a
hard-sphere system with the same N and φ.
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force that drives velocity fluctuations in the suspension. These are seen in the form of
a velocity variance in the vertical direction that grows from 0.027 for N = 16 to 0.084
for N = 512. For comparison, the velocity variance predicted for a homogeneous
suspension is 0.0129.

It is likely that the enhanced particle pressure created by the shear work associated
with this macroscopic shearing motion limits the extent of the suspension structure
formed. The mean velocity of the particles also grows with box size. This may be
attributed to the fact that more particles will be found in dense downward flowing
portions of the suspension than in less dense regions with upward mean mixture
velocities.

The simulations discussed above were performed with the multipole order for
individual particles corresponding to Ns = 2. Large-N simulations using the O(N)
algorithm described in Sangani & Mo (1996) also require a specification of Nsp,
the multipole order used in representing the far-field velocity induced by groups of
particles. The results presented in table 5 for N > 64 employed Nsp = 3. Computations
were also made with Nsp = 4 for somewhat smaller time duration to assess the effect
of varying Nsp, and it was found that Nsp = 3 and Nsp = 4 gave essentially the same
results.

Simulations for a more dense suspension (φ = 0.35 and St = 100) that is predicted
to exhibit inhomogeneous structure are summarized in table 5(b). Since the source of
velocity fluctuations at φ = 0.35 for Ns = 2 is much smaller than for Ns = 3, these
simulations were made with Ns = 3. At higher volume fractions the error introduced
by grouping the particles in the O(N) algorithm is significant unless sufficiently large
Nsp is used. For simulations with N = 1024 this required that Nsp > 5 be chosen
to minimize the error. The computing time increases roughly as N4

sp, and therefore
Nsp = 5 requires about 35 times more computing time than the value Nsp = 2
used in Sangani & Mo (1996). In that study, the same Nsp was used for groups of
different sizes. We found that the computing time can be reduced significantly without
sacrificing accuracy if a smaller Nsp was used for smaller groups of particles and a
larger Nsp for larger groups. Thus, the results for N = 1024 were obtained by using
Nsp of 4 for level 2 particle groups and Nsp of 5 for level 1 groups.

The results for φ = 0.35 are similar to those for φ = 0.05. The box-length structure
factor reaches a value of 0.4–1.3 at N = 1024 that is much higher than the value (0.1)
for a hard-sphere distribution. This is illustrated in figure 15(b) where the parallel
and perpendicular structure factors for the suspension are plotted as circles and
squares respectively and the hard-sphere structure factor is given by the triangles. An
alternative way of visualizing the suspension structure is to divide the simulation cell
for N = 1024 into 64 boxes so that on average each box contains 16 particles. The
variation of the mean volume fraction among these boxes then gives an indication
of the inhomogeneity of the suspension and the tendency to form regions devoid of
particles which may represent the first stages of bubble formation. The minimum and
maximum volume fractions φmin and φmax among the boxes is plotted as a function of
time in figure 16 for the gas-fluidized bed (lines) and a hard-sphere system with the
same T‖ (plusses and crosses). The smallest φmin attained in the gas–solid suspension
correspond to 6 particles in a box whereas the most dilute regions for the hard-sphere
system contained 10 particles. As in the more dilute suspensions, the velocity variance
at φ = 0.35 increases with increasing system size. The variance grows from a value
T = 6.3×10−4 at N = 16 that is 40% higher than that for a homogeneous suspension
to a value T = 1.5× 10−3 for N = 1024 that is more than three times larger than the
homogeneous value.
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Figure 16. φmin and φmax as a function of time for a simulation with N = 1024 and φ = 0.35.
The solid lines represent sedimenting suspensions with St = 100 and the plusses and the crosses
represent a hard-sphere system with the same value of T‖.

6. Conclusions
In this paper, we have derived equations of motion for gas–solid suspensions with a

mean relative motion between the gas and particulate phases. The equations presented
in § 4 apply when all the spatial gradients are parallel to gravity. A more complete set
of equations of motion allowing for arbitrary spatial gradients is summarized in the
Appendix. The theory of rapid granular flows as derived, for example, by Lun et al.
(1984) describes the flow of particles in a vacuum by incorporating inelastic particle
collisions in the theory of dense gases. Sangani et al. (1996) extended this work to
sheared gas–solid suspensions by determining the viscous dissipation of energy. Here,
we have generalized the work of Sangani et al. to allow for a mean relative motion of
the two phases. This relative motion gives rise to a mean drag force which, for a high-
Stokes-number suspension, is equivalent to that acting on a fixed bed of particles, cf.
figure 2 and (26). In addition, the fluctuating gas velocity field produced by the mean
motion of the randomly positioned particles exerts fluctuating forces on the particles
that result in a source of particulate-phase fluctuating energy given by (22) and (23)
and figure 1. The present theory like those of Lun et al. and Sangani et al. assumes
that the particles undergo instantaneous solid-body collisions but do not experience
enduring solid-body contacts.

As applications of these equations of motion, we calculated the particle velocity
variance (or granular temperature) and particle pressure in a homogeneous sediment-
ing gas–solid suspension or gas-fluidized bed and determined the marginal stability
limits of the homogeneous state. The theoretical results were compared with dynamical
simulations that solved the detailed equations of motion for an array of N = 16–1024
particles in a viscous gas. At moderate-to-high Stokes numbers, the velocity variance
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non-dimensionalized by the square of the particles’ terminal velocity decays like St−2/3

with increasing Stokes number as illustrated in figure 3. The sedimenting particles
produce stronger velocity fluctuations in the vertical than the horizontal direction and
this makes the source of fluctuating energy highly anisotropic. As a result, the vertical
velocity variance is significantly higher than the horizontal except at very high Stokes
numbers where the solid-body collisions can efficiently transfer energy from vertical
to horizontal motions, cf. figure 4.

The particle pressure (presented in figures 6 and 7) grows at first with increasing
volume fraction due to the increasing particle concentration and the higher frequency
of interparticle collisions. However, this growth is slower than would be obtained
for a constant-temperature molecular gas because the temperature in the gas–solid
suspension decreases with increasing volume fraction. This decreased temperature
arises because of the stronger viscous dissipation occurring in a dense suspension
and because the hydrodynamic source of energy decreases with increasing volume
fraction. In very dense suspensions, φ > 0.57, the particle pressure actually decreases
with increasing volume fraction.

Prediction of the marginal stability limits for the homogeneous state of a gas-
fluidized bed has long been considered an important test for proposed equations
of motion for particulate flows. The standard theory identifies the coupled effects
of particle inertia and the dependence of the drag coefficient on volume fraction
as the destabilizing mechanism, while the particle-phase pressure was supposed to
stabilize the homogeneous suspension under certain conditions. However, up to the
present time, there has been no rigorous derivation of the magnitude of the particle-
phase pressure and so a predictive theory for the marginal stability limits could not be
obtained. We have carried this line of theoretical investigation to its logical conclusion
by using kinetic theory and Stokes flow simulation methods to derive the particle-
phase pressure and rheology in a gas–solid suspension over a wide range of particle
volume fractions and Stokes numbers. An important part of this derivation is the
determination of the particle-phase velocity variance tensor including hydrodynamic
sources and sinks of particle-phase fluctuating energy. Thus, the equations of motion
in the present investigation differ from those in much of the previous fluidized-
bed literature in that they incorporate explicit energy equations for the vertical and
horizontal particle velocity fluctuations. The linear stability analysis of the resulting
equations of motion indicates that the homogeneous state is unstable to vertical waves
for Stokes numbers greater than about 5 except in very dilute suspensions, where
the critical Stokes number is proportional to φ−3/2, cf. figure 11. This prediction is
corroborated by our dynamic simulations which exhibit substantial deviations from
the hard-sphere structure factor whenever the periodic unit cell is sufficiently large
to admit waves that can be described by the continuum equations of motion for
the suspension. The simulations also exhibit a velocity variance that grows with the
simulation cell size; this variance may be attributed to the macroscopic shearing
motions induced by the inhomogeneous particle distribution. Therefore, we conclude
that the homogeneous state of a high-Stokes-number, dense, gas-fluidized bed is
always unstable under circumstances in which the suspension may be described
as a ‘fluid’ obeying equations of motion that can be derived on the basis of a
microscale description of particles interacting via instantaneous hard-sphere collisions
and hydrodynamic interactions.

This finding is consistent with the conclusion drawn by Tsinotides & Jackson
(1993) based on their experimental observations that the homogeneous state of many
(and possibly all) dense gas-fluidized beds is associated with a solid-like state of the
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suspension. To gain a better understanding of this phenomenon, it would be desirable
to formulate a theoretical description of the transition from the solid-like behaviour
that must occur in the dense-packed limit and the fluid state described in the present
work.

It may be difficult to obtain a direct experimental test of our theoretical predictions
beyond the observation that high-Stokes-number, dense, fluid-like gas-fluidized beds
are unstable. A typical system of 70 µm diameter particles with a density of 2.5 g cm−3

has a Stokes number of 400. Thus, a homogeneous suspension of these particles would
only be expected to be stable if it were very dilute φ < 0.004. To observe this marginal
stability limit, great care would need to be taken to ensure that the suspension is
initially well mixed so that any observed inhomogeneities can be attributed exclusively
to inherent instabilities of the suspension. The marginal stability limits for high volume
fractions are not of practical relevance to terrestrial gas–solid suspensions, because
any particles small enough to exhibit the small Stokes numbers required would
also be affected by electrostatic, van der Waals, and/or Brownian forces. It may
be possible to produce a moderate-Stokes-number gas–solid suspension interacting
via collisional and hydrodynamic forces by using large particles under microgravity
conditions. A less exotic system that can exhibit Stokes numbers in the range 1–10
is a suspension of particles fluidized by a viscous liquid. The present theory is not
directly applicable to this situation because it neglects the inertia of the fluid (in a
liquid–solid system the Stokes and Reynolds numbers are comparable in value). In
addition, the quantitative accuracy of the high-Stokes-number theory is questionable
for St = 1–10. Nonetheless, the present work may elucidate some of the relevant
physical considerations governing the stability of such a system.
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Appendix. Equations of motion for a sheared gas–solid suspension with
relative motion between the phases

In § 4, we presented equations of motion for a gas–solid suspension obtained by
generalizing the analysis of Sangani et al. (1996) to allow for a relative motion of
the gas and solid phases. Because we were interested in the behaviour of particle
volume fraction waves with spatial variations parallel to the direction of the mean
flow, we simplified the equations for this special case. In this Appendix, the full
equations of motion for a gas–solid suspension with relative velocity between the
phases and spatial gradients of velocity and volume fraction in arbitrary directions
will be summarized. These consist of mass and momentum conservation equations
for the gas and solid phases and an equation for the second moment of the particle
velocity.

The mass conservation equations for the particle and gas phases are

∂φ

∂t
+ ∇ · (Uφ) = 0 (A 1)

(1− φ)

∂t
+ ∇ · [V (1− φ)] = 0, (A 2)
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where V is the mean velocity of the gas phase. Alternatively, one can consider the
mixture average velocity W = V (1−φ) +φU as a dependent variable in place of V .
The incompressibility of the mixture implies that

∇ ·W = 0. (A 3)

The particle momentum conservation equation obtained from (4.13)–(4.16) and (4.22)
of Sangani et al. (1996) takes the form

ρpφ

(
∂U

∂t
+U · ∇U

)
= ρpφg+ 6πµan(1− φ)Rdrag(V −U ) + ∇ · σ (A 4)

where Rdrag is given by (25) and (26). In §§ 3 and 4, it was assumed that the mixture
velocity was zero and the drag force was then expressed solely in terms of the particle
velocity. Here, we have written the drag in terms of the difference between the particle
and gas velocities, so that (A 4) can be applied to the case W 6= 0. The particle stress
is related to the second moment Tij of the particle velocity by

σij = −ρp (φ+ 8
5
B
)
Tij − 12

5
ρpBTδij +

32

5π1/2
ρpBaT

1/2
(
eij + 1

2
ekkδij

)
(A 5)

where B is given by (41) and the rate of strain is

eij =
1

2

(
∂Ui

∂xj
+
∂Uj

∂xi

)
. (A 6)

Because the density of the gas is much smaller than that of the particles, we will
neglect the inertia of the gas and approximate the gas momentum equation as a
balance of the gradient of the gas pressure p, the force per unit volume exerted by
the particles on the gas, and the viscous stresses in the gas:

∇p = 6πµan(1− φ)Rdrag(U − V ) + µ∇2V . (A 7)

In writing (A 7) we have neglected any effect of the particles on the gas-phase viscous
stress. This effect will be O(φ) in the dilute limit. In more concentrated suspensions, the
viscous stress in the gas may be neglected compared with the drag force provided that
the gas velocity varies over a lengthscale large compared with the particle diameter.

Finally, the equation for the second moment of the particle velocity obtained by
supplementing equations (4.8), (4.10), (4.21), and (4.22) of Sangani et al. (1996) with
the hydrodynamic source of energy computed in § 3 of the present paper takes the
form

1
2
φ

(
∂Tij

∂t
+Uk

∂Tij

∂xk

)
=

∂

∂xk

(
aκ
∂Tij

∂xk

)
− [φ+ 4

5
B(6η − 4)

]
Teij

−µc
a

[
(2− η)Tij − ( 1

3
+ 2

3
η
)
Tδij

]− 2
(
φ+ 8

5
B
)
ejk(Tki − Tδki)

−φ
τv
RdissTij +

µca

3

[
∂Ui

∂xk
ejk +

∂Uj

∂xk
eki + ekkeij

]
− 12

5
B
(
η − 2

3

)
ekkδijT

+
81φµ2

4ρ2
pa3T 1/2

[S∗⊥ |U − V |2 δij + (S∗‖ − S∗⊥)(Ui − Vi)(Uj − Vj)] (A 8)

where τv = m/(6πµa) is the viscous relaxation time for the particle velocity, µc is
given by (40), the sources S∗‖ and S∗⊥ may be obtained from (32) and (33), and

the dependence of Rdiss and Rs on volume fraction are expressed in (27) and (23).
The non-dimensional thermal conductivity κ is given by (44). As noted in § 4, the
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divergence of the third velocity moment arising in the equation for the second moment
must be approximated to obtained a closed set of equations. We have adopted the
assumption that the conductive transport of each second moment may be expressed
using Fourier’s law for a hard-sphere gas. In the application in § 4 to void fraction
waves we used T‖ in the expression for κ based on the insight that the gradients of
granular temperature and the relevant flux of granular energy were directed parallel
to gravity. In the more general situation, it may be more appropriate to approximate
κ by using the isotropic temperature T (one third of the velocity variance) in (44).
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